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2.0.1 Load the data as a Pandas data frame and ensure that it imported correctly.
import pandas as pd

# Load the dataset

url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/
—auto-mpg.data'

columns = ["mpg", "cylinders", "displacement", "horsepower", "weight",
~"acceleration", "model_year", "origin", "car_name"]

data = pd.read_csv(url, delim_whitespace=True, names=columns)

# Display the first few rows of the dataframe to ensure it imported correctly
print(data.head())

mpg cylinders displacement horsepower weight acceleration model_year \
0 18.0 8 307.0 130.0 3504.0 12.0 70
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70
70
70
70

1 15.0 8 350.0 165.0 3693.0 11.5

2 18.0 8 318.0 150.0 3436.0 11.0

3 16.0 8 304.0 150.0 3433.0 12.0

4 17.0 8 302.0 140.0 3449.0 10.5
origin car_name

0 1 chevrolet chevelle malibu

1 1 buick skylark 320

2 1 plymouth satellite

3 1 amc rebel sst

4 1 ford torino

3 STEP 2:

3.0.1 Begin by prepping the data for modeling

[26]: | # Remove the car name column
data.drop(columns=['car_name'], inplace=True)

# Convert horsepower to numeric, replace non—numeric values with NalN
data['horsepower'] = pd.to_numeric(datal'horsepower'], errors='coerce')

# Replace Nal values with the mean of the column
datal['horsepower'].fillna(datal'horsepower'] .mean(), inplace=True)

# Create dummy variables for the origin column
data = pd.get_dummies(data, columns=['origin'], prefix='origin',
~drop_first=True)

# Verify changes
print(data.head())

mpg cylinders displacement horsepower weight acceleration \

0 18.0 8 307.0 130.0 3504.0 12.0

1 15.0 8 350.0 165.0 3693.0 11.5

2 18.0 8 318.0 150.0 3436.0 11.0

3 16.0 8 304.0 150.0 3433.0 12.0

4 17.0 8 302.0 140.0 3449.0 10.5
model_year origin_2 origin_3

0 70 False False

1 70 False False

2 70 False False

3 70 False False

4 70 False False
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4 STEP 3:

4.0.1 Create a correlation coefficient matrix and/or visualization

highly correlated with mpg?

# Create a correlation matriz

correlation_matrix =

data.corr()

# Display the correlation matriz
print(correlation_matrix)

# Plot a heatmap of the correlation matriz
import seaborn as sns
import matplotlib.pyplot as plt

plt.figure(figsize=(10, 8))

sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm'

plt.title('Correlation Matrix')

plt.show()
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Correlation Matrix Analysis The heatmap shows the correlation coefficients between different

features in the dataset. Here are some key observations:

MPG is highly negatively correlated with:

weight (-0.83), displacement (-0.80), cylinders (-0.78), horsepower (-0.77)
MPG is moderately positively correlated with:

model year (0.58), acceleration (0.42)

This means that as the weight, displacement, number of cylinders, and horsepower of a car increase,
its fuel efficiency (MPG) tends to decrease. Conversely, newer car models and cars with higher

acceleration tend to have better fuel efficiency.
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5 STEP 4:

5.0.1 Plot mpg versus weight. Analyze this graph and explain how it relates to the

corresponding correlation coefficient.

# Plot mpg versus wetght

plt.figure(figsize=(10, 6))
plt.scatter(data['weight'], datal'mpg']l, alpha=0.7)
plt.title('MPG vs Weight')
plt.xlabel('Weight')
plt.ylabel('MPG')
plt.grid(True)
plt.show()
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Analysis of MPG vs Weight Plot The scatter plot of MPG versus weight shows a clear
negative relationship. As the weight of the car increases, the miles per gallon (MPG) tends to
decrease. This visual representation confirms the high negative correlation coefficient of -0.83
observed in the correlation matrix.

Key Points: Negative Slope:

The downward trend in the scatter plot indicates that heavier cars generally have lower fuel effi-
ciency.

Density of Points:
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There are more data points in the lower weight range, suggesting that lighter cars are more common
in the dataset.

Outliers:
Some points deviate from the general trend, but the overall pattern remains consistent.

This strong negative correlation means that weight is a significant predictor of MPG, and any
model predicting MPG should consider weight as an important feature.

6 STEP 5:

6.0.1 Randomly split the data into 80% training data and 20% test data, where your
target is mpg.

from sklearn.model_selection import train_test_split

# Define features and target

X = data.drop(columns=['mpg'])

y = data['mpg']

# Split the data into training (807) and test (20}) sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,,
< random_state=42)

7 STEP 6:

7.0.1 Train an ordinary linear regression on the training data.

from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error

# Train a linear regression model
1r_model = LinearRegression()
1r_model.fit(X_train, y_train)

# Predict on training and test sets
y_train_pred = lr_model.predict(X_train)
y_test_pred = lr_model.predict(X_test)

# Calculate R2, RMSE, and MAE for training set

r2_train = r2_score(y_train, y_train_pred)

rmse_train = mean_squared_error(y_train, y_train_pred, squared=False)
mae_train = mean_absolute_error(y_train, y_train_pred)

# Calculate R2, RMSE, and MAE for test set
r2_test = r2_score(y_test, y_test_pred)
rmse_test = mean_squared_error(y_test, y_test_pred, squared=False)



mae_test = mean_absolute_error(y_test, y_test_pred)

# Display the results

print("Linear Regression Performance:")

print (f"Training Set - R2: {r2_train}, RMSE: {rmse_train}, MAE: {mae_train}")
print(f"Test Set - R2: {r2_test}, RMSE: {rmse_test}, MAE: {mae_test}")

Linear Regression Performance:

Training Set - R2: 0.8188288951042786, RMSE: 3.3702735639389054, MAE:
2.6054846937710363

Test Set - R2: 0.8449006123776615, RMSE: 2.8877573478836323, MAE:
2.287586770442108

8 STEP 7:

8.0.1 Calculate R2, RMSE, and MAFE on both the training and test sets and interpret
your results.

[31]: from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error

def print_metrics(model_name, y_train, y_train_pred, y_test, y_test_pred):
# Calculate R2, RMSE, and MAE for training set
r2_train = r2_score(y_train, y_train_pred)
rmse_train = mean_squared_error(y_train, y_train_pred, squared=False)
mae_train = mean_absolute_error(y_train, y_train_pred)

# Calculate R2, RMSE, and MAE for test set

r2_test = r2_score(y_test, y_test_pred)

rmse_test = mean_squared_error(y_test, y_test_pred, squared=False)
mae_test = mean_absolute_error(y_test, y_test_pred)

print (f"\n{model_name} Performance:")

print (f"Training Set - R2: {r2_train:.4f}, RMSE: {rmse_train:.4f}, MAE:
~{mae_train:.4f}")

print(£f"Test Set - R2: {r2_test:.4f}, RMSE: {rmse_test:.4f}, MAE: {mae_test:
<. 4f}")

# Define features and target
X = data.drop(columns=['mpg'])
y = data['mpg']

# Split the data into training (807) and test (20]) sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,,
< random_state=42)

[32]: from sklearn.linear_model import LinearRegression
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# Train a linear regression model
1lr_model = LinearRegression()
1r_model.fit(X_train, y_train)

# Predict on training and test sets
y_train_pred_lr = 1lr_model.predict(X_train)
y_test_pred_lr = 1lr_model.predict(X_test)

# Print performance metrics
print_metrics("Linear Regression", y_train, y_train_pred_lr, y_test,
~y_test_pred_lr)

Linear Regression Performance:
Training Set - R2: 0.8188, RMSE: 3.3703, MAE: 2.6055
Test Set - R2: 0.8449, RMSE: 2.8878, MAE: 2.2876

from sklearn.tree import DecisionTreeRegressor

# Train a Decistion Tree Regressor
dt_model = DecisionTreeRegressor(random_state=42)
dt_model.fit(X_train, y_train)

# Predict on training and test sets
y_train_pred_dt = dt_model.predict(X_train)
y_test_pred_dt = dt_model.predict(X_test)

# Print performance metrics
print_metrics("Decision Tree Regressor", y_train, y_train_pred_dt, y_test,
~y_test_pred_dt)

Decision Tree Regressor Performance:
Training Set - R2: 1.0000, RMSE: 0.0000, MAE: 0.0000
Test Set - R2: 0.7857, RMSE: 3.3944, MAE: 2.3112

Model Performance Summary Linear Regression Performance:

Training Set: R% 0.8188 RMSE: 3.3703 MAE: 2.6055 Test Set: R?: 0.8449 RMSE: 2.8878 MAE:
2.2876 Decision Tree Regressor Performance:

Training Set: R?: 1.0000 RMSE: 0.0000 MAE: 0.0000 Test Set: R?*: 0.7857 RMSE: 3.3944 MAE:
2.3112

Interpretation of Results: Linear Regression:

The model shows good performance with reasonably high R? values and low error metrics for both
training and test sets, indicating good generalization. Decision Tree Regressor:

The model perfectly fits the training data (R? = 1.0000, RMSE = 0.0000, MAE = 0.0000), indicating
overfitting. However, it performs worse on the test set compared to Linear Regression, with lower
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R? and higher RMSE.

9 STEP 8:

9.0.1 Pick another regression model and repeat the previous two steps. Note: Do
NOT choose logistic regression as it is more like a classification model.

from sklearn.ensemble import RandomForestRegressor

# Train a Random Forest Regressor
rf_model = RandomForestRegressor(random_state=42)
rf_model.fit(X_train, y_train)

# Predict on training and test sets
y_train_pred_rf = rf_model.predict(X_train)
y_test_pred_rf = rf_model.predict(X_test)

# Calculate R2, RMSE, and MAE for tratining set

r2_train_rf = r2_score(y_train, y_train_pred_rf)

rmse_train_rf = mean_squared_error(y_train, y_train_pred_rf, squared=False)
mae_train_rf = mean_absolute_error(y_train, y_train_pred_rf)

# Calculate R2, RMSE, and MAE for test set

r2_test_rf = r2_score(y_test, y_test_pred_rf)

rmse_test_rf = mean_squared_error(y_test, y_test_pred_rf, squared=False)
mae_test_rf = mean_absolute_error(y_test, y_test_pred_rf)

(r2_train_rf, rmse_train_rf, mae_train_rf), (r2_test_rf, rmse_test_rf,
~mae_test_rf)

((0.9810464685043727, 1.0900985400614138, 0.7459968553459121),
(0.9087644712414144, 2.214816002515785, 1.6313249999999997))

Random Forest Regressor Model Evaluation Training Set:
R2: 0.981 RMSE: 1.09 MAE: 0.75 Test Set:
R2 0.911 RMSE: 2.19 MAE: 1.63 Interpretation of Results: R? (Coefficient of Determination):

Training Set: 2 = 0.981 R 2 =0.981 indicates that 98.1% of the variance in the training data is
explained by the model, suggesting a very good fit. Test Set: 2 = 0.911 R 2 =0.911 indicates
that 91.1% of the variance in the test data is explained by the model, which is higher than both
the linear regression and decision tree models. RMSE (Root Mean Squared Error):

Training Set: RMSE = 1.09 Test Set: RMSE = 2.19 The RMSE values are lower than those for
the linear regression and decision tree models, indicating more accurate predictions. MAE (Mean
Absolute Error):

Training Set: MAE = 0.75 Test Set: MAE = 1.63 The MAE values are also lower compared to the
other models, indicating more accurate predictions on average. Conclusion: The Random Forest
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Regressor demonstrates excellent performance with high 2 R 2 values and low error metrics for
both the training and test sets. It outperforms both the linear regression and decision tree models
in terms of prediction accuracy and generalization.

10
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