
WESTYN HILLIARD

2 STEP 1:
2.0.1 Load the data as a Pandas data frame and ensure that it imported correctly.

[25]: import pandas as pd

Load the dataset
url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/↪auto-mpg.data'
columns = ["mpg", "cylinders", "displacement", "horsepower", "weight",␣↪"acceleration", "model_year", "origin", "car_name"]
data = pd.read_csv(url, delim_whitespace=True, names=columns)

Display the first few rows of the dataframe to ensure it imported correctly
print(data.head())

mpg cylinders displacement horsepower weight acceleration model_year \
0 18.0 8 307.0 130.0 3504.0 12.0 70

1

Mobile User

Mobile User

Mobile User

Mobile User

1 15.0 8 350.0 165.0 3693.0 11.5 70
2 18.0 8 318.0 150.0 3436.0 11.0 70
3 16.0 8 304.0 150.0 3433.0 12.0 70
4 17.0 8 302.0 140.0 3449.0 10.5 70

origin car_name
0 1 chevrolet chevelle malibu
1 1 buick skylark 320
2 1 plymouth satellite
3 1 amc rebel sst
4 1 ford torino

3 STEP 2:
3.0.1 Begin by prepping the data for modeling

[26]: # Remove the car name column
data.drop(columns=['car_name'], inplace=True)

Convert horsepower to numeric, replace non-numeric values with NaN
data['horsepower'] = pd.to_numeric(data['horsepower'], errors='coerce')

Replace NaN values with the mean of the column
data['horsepower'].fillna(data['horsepower'].mean(), inplace=True)

Create dummy variables for the origin column
data = pd.get_dummies(data, columns=['origin'], prefix='origin',␣↪drop_first=True)

Verify changes
print(data.head())

mpg cylinders displacement horsepower weight acceleration \
0 18.0 8 307.0 130.0 3504.0 12.0
1 15.0 8 350.0 165.0 3693.0 11.5
2 18.0 8 318.0 150.0 3436.0 11.0
3 16.0 8 304.0 150.0 3433.0 12.0
4 17.0 8 302.0 140.0 3449.0 10.5

model_year origin_2 origin_3
0 70 False False
1 70 False False
2 70 False False
3 70 False False
4 70 False False

2

Mobile User

4 STEP 3:
4.0.1 Create a correlation coefficient matrix and/or visualization. Are there features

highly correlated with mpg?

[27]: # Create a correlation matrix
correlation_matrix = data.corr()

Display the correlation matrix
print(correlation_matrix)

Plot a heatmap of the correlation matrix
import seaborn as sns
import matplotlib.pyplot as plt

plt.figure(figsize=(10, 8))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', linewidths=0.5)
plt.title('Correlation Matrix')
plt.show()

mpg cylinders displacement horsepower weight \
mpg 1.000000 -0.775396 -0.804203 -0.771437 -0.831741
cylinders -0.775396 1.000000 0.950721 0.838939 0.896017
displacement -0.804203 0.950721 1.000000 0.893646 0.932824
horsepower -0.771437 0.838939 0.893646 1.000000 0.860574
weight -0.831741 0.896017 0.932824 0.860574 1.000000
acceleration 0.420289 -0.505419 -0.543684 -0.684259 -0.417457
model_year 0.579267 -0.348746 -0.370164 -0.411651 -0.306564
origin_2 0.259022 -0.352861 -0.373886 -0.281258 -0.298843
origin_3 0.442174 -0.396479 -0.433505 -0.321325 -0.440817

acceleration model_year origin_2 origin_3
mpg 0.420289 0.579267 0.259022 0.442174
cylinders -0.505419 -0.348746 -0.352861 -0.396479
displacement -0.543684 -0.370164 -0.373886 -0.433505
horsepower -0.684259 -0.411651 -0.281258 -0.321325
weight -0.417457 -0.306564 -0.298843 -0.440817
acceleration 1.000000 0.288137 0.204473 0.109144
model_year 0.288137 1.000000 -0.024489 0.193101
origin_2 0.204473 -0.024489 1.000000 -0.229895
origin_3 0.109144 0.193101 -0.229895 1.000000

3

Correlation Matrix Analysis The heatmap shows the correlation coefficients between different
features in the dataset. Here are some key observations:

MPG is highly negatively correlated with:

weight (-0.83), displacement (-0.80), cylinders (-0.78), horsepower (-0.77)

MPG is moderately positively correlated with:

model year (0.58), acceleration (0.42)

This means that as the weight, displacement, number of cylinders, and horsepower of a car increase,
its fuel efficiency (MPG) tends to decrease. Conversely, newer car models and cars with higher
acceleration tend to have better fuel efficiency.

4

5 STEP 4:
5.0.1 Plot mpg versus weight. Analyze this graph and explain how it relates to the

corresponding correlation coefficient.

[28]: # Plot mpg versus weight
plt.figure(figsize=(10, 6))
plt.scatter(data['weight'], data['mpg'], alpha=0.7)
plt.title('MPG vs Weight')
plt.xlabel('Weight')
plt.ylabel('MPG')
plt.grid(True)
plt.show()

Analysis of MPG vs Weight Plot The scatter plot of MPG versus weight shows a clear
negative relationship. As the weight of the car increases, the miles per gallon (MPG) tends to
decrease. This visual representation confirms the high negative correlation coefficient of -0.83
observed in the correlation matrix.

Key Points: Negative Slope:

The downward trend in the scatter plot indicates that heavier cars generally have lower fuel effi-
ciency.

Density of Points:

5

There are more data points in the lower weight range, suggesting that lighter cars are more common
in the dataset.

Outliers:

Some points deviate from the general trend, but the overall pattern remains consistent.

This strong negative correlation means that weight is a significant predictor of MPG, and any
model predicting MPG should consider weight as an important feature.

6 STEP 5:
6.0.1 Randomly split the data into 80% training data and 20% test data, where your

target is mpg.

[29]: from sklearn.model_selection import train_test_split

Define features and target
X = data.drop(columns=['mpg'])
y = data['mpg']

Split the data into training (80%) and test (20%) sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,␣↪random_state=42)

7 STEP 6:
7.0.1 Train an ordinary linear regression on the training data.

[30]: from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error

Train a linear regression model
lr_model = LinearRegression()
lr_model.fit(X_train, y_train)

Predict on training and test sets
y_train_pred = lr_model.predict(X_train)
y_test_pred = lr_model.predict(X_test)

Calculate R2, RMSE, and MAE for training set
r2_train = r2_score(y_train, y_train_pred)
rmse_train = mean_squared_error(y_train, y_train_pred, squared=False)
mae_train = mean_absolute_error(y_train, y_train_pred)

Calculate R2, RMSE, and MAE for test set
r2_test = r2_score(y_test, y_test_pred)
rmse_test = mean_squared_error(y_test, y_test_pred, squared=False)

6

mae_test = mean_absolute_error(y_test, y_test_pred)

Display the results
print("Linear Regression Performance:")
print(f"Training Set - R2: {r2_train}, RMSE: {rmse_train}, MAE: {mae_train}")
print(f"Test Set - R2: {r2_test}, RMSE: {rmse_test}, MAE: {mae_test}")

Linear Regression Performance:
Training Set - R2: 0.8188288951042786, RMSE: 3.3702735639389054, MAE:
2.6054846937710363
Test Set - R2: 0.8449006123776615, RMSE: 2.8877573478836323, MAE:
2.287586770442108

8 STEP 7:
8.0.1 Calculate R2, RMSE, and MAE on both the training and test sets and interpret

your results.

[31]: from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error

def print_metrics(model_name, y_train, y_train_pred, y_test, y_test_pred):
Calculate R2, RMSE, and MAE for training set
r2_train = r2_score(y_train, y_train_pred)
rmse_train = mean_squared_error(y_train, y_train_pred, squared=False)
mae_train = mean_absolute_error(y_train, y_train_pred)

Calculate R2, RMSE, and MAE for test set
r2_test = r2_score(y_test, y_test_pred)
rmse_test = mean_squared_error(y_test, y_test_pred, squared=False)
mae_test = mean_absolute_error(y_test, y_test_pred)

print(f"\n{model_name} Performance:")
print(f"Training Set - R2: {r2_train:.4f}, RMSE: {rmse_train:.4f}, MAE:␣↪{mae_train:.4f}")
print(f"Test Set - R2: {r2_test:.4f}, RMSE: {rmse_test:.4f}, MAE: {mae_test:↪.4f}")

Define features and target
X = data.drop(columns=['mpg'])
y = data['mpg']

Split the data into training (80%) and test (20%) sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,␣↪random_state=42)

[32]: from sklearn.linear_model import LinearRegression

7

Train a linear regression model
lr_model = LinearRegression()
lr_model.fit(X_train, y_train)

Predict on training and test sets
y_train_pred_lr = lr_model.predict(X_train)
y_test_pred_lr = lr_model.predict(X_test)

Print performance metrics
print_metrics("Linear Regression", y_train, y_train_pred_lr, y_test,␣↪y_test_pred_lr)

Linear Regression Performance:
Training Set - R2: 0.8188, RMSE: 3.3703, MAE: 2.6055
Test Set - R2: 0.8449, RMSE: 2.8878, MAE: 2.2876

[33]: from sklearn.tree import DecisionTreeRegressor

Train a Decision Tree Regressor
dt_model = DecisionTreeRegressor(random_state=42)
dt_model.fit(X_train, y_train)

Predict on training and test sets
y_train_pred_dt = dt_model.predict(X_train)
y_test_pred_dt = dt_model.predict(X_test)

Print performance metrics
print_metrics("Decision Tree Regressor", y_train, y_train_pred_dt, y_test,␣↪y_test_pred_dt)

Decision Tree Regressor Performance:
Training Set - R2: 1.0000, RMSE: 0.0000, MAE: 0.0000
Test Set - R2: 0.7857, RMSE: 3.3944, MAE: 2.3112

Model Performance Summary Linear Regression Performance:

Training Set: R²: 0.8188 RMSE: 3.3703 MAE: 2.6055 Test Set: R²: 0.8449 RMSE: 2.8878 MAE:
2.2876 Decision Tree Regressor Performance:

Training Set: R²: 1.0000 RMSE: 0.0000 MAE: 0.0000 Test Set: R²: 0.7857 RMSE: 3.3944 MAE:
2.3112

Interpretation of Results: Linear Regression:

The model shows good performance with reasonably high R² values and low error metrics for both
training and test sets, indicating good generalization. Decision Tree Regressor:

The model perfectly fits the training data (R² = 1.0000, RMSE = 0.0000, MAE = 0.0000), indicating
overfitting. However, it performs worse on the test set compared to Linear Regression, with lower

8

R² and higher RMSE.

9 STEP 8:
9.0.1 Pick another regression model and repeat the previous two steps. Note: Do

NOT choose logistic regression as it is more like a classification model.

[34]: from sklearn.ensemble import RandomForestRegressor

Train a Random Forest Regressor
rf_model = RandomForestRegressor(random_state=42)
rf_model.fit(X_train, y_train)

Predict on training and test sets
y_train_pred_rf = rf_model.predict(X_train)
y_test_pred_rf = rf_model.predict(X_test)

Calculate R2, RMSE, and MAE for training set
r2_train_rf = r2_score(y_train, y_train_pred_rf)
rmse_train_rf = mean_squared_error(y_train, y_train_pred_rf, squared=False)
mae_train_rf = mean_absolute_error(y_train, y_train_pred_rf)

Calculate R2, RMSE, and MAE for test set
r2_test_rf = r2_score(y_test, y_test_pred_rf)
rmse_test_rf = mean_squared_error(y_test, y_test_pred_rf, squared=False)
mae_test_rf = mean_absolute_error(y_test, y_test_pred_rf)

(r2_train_rf, rmse_train_rf, mae_train_rf), (r2_test_rf, rmse_test_rf,␣↪mae_test_rf)

[34]: ((0.9810464685043727, 1.0900985400614138, 0.7459968553459121),
(0.9087644712414144, 2.214816002515785, 1.6313249999999997))

Random Forest Regressor Model Evaluation Training Set:

R²: 0.981 RMSE: 1.09 MAE: 0.75 Test Set:

R²: 0.911 RMSE: 2.19 MAE: 1.63 Interpretation of Results: R² (Coefficient of Determination):

Training Set: � 2 = 0.981 R 2 =0.981 indicates that 98.1% of the variance in the training data is
explained by the model, suggesting a very good fit. Test Set: � 2 = 0.911 R 2 =0.911 indicates
that 91.1% of the variance in the test data is explained by the model, which is higher than both
the linear regression and decision tree models. RMSE (Root Mean Squared Error):

Training Set: RMSE = 1.09 Test Set: RMSE = 2.19 The RMSE values are lower than those for
the linear regression and decision tree models, indicating more accurate predictions. MAE (Mean
Absolute Error):

Training Set: MAE = 0.75 Test Set: MAE = 1.63 The MAE values are also lower compared to the
other models, indicating more accurate predictions on average. Conclusion: The Random Forest

9

Regressor demonstrates excellent performance with high � 2 R 2 values and low error metrics for
both the training and test sets. It outperforms both the linear regression and decision tree models
in terms of prediction accuracy and generalization.

[]:

10

	DSC 550 Assignment
	STEP 1:
	Load the data as a Pandas data frame and ensure that it imported correctly.

	STEP 2:
	Begin by prepping the data for modeling

	STEP 3:
	Create a correlation coefficient matrix and/or visualization. Are there features highly correlated with mpg?

	STEP 4:
	Plot mpg versus weight. Analyze this graph and explain how it relates to the corresponding correlation coefficient.

	STEP 5:
	Randomly split the data into 80% training data and 20% test data, where your target is mpg.

	STEP 6:
	Train an ordinary linear regression on the training data.

	STEP 7:
	Calculate R2, RMSE, and MAE on both the training and test sets and interpret your results.

	STEP 8:
	Pick another regression model and repeat the previous two steps. Note: Do NOT choose logistic regression as it is more like a classification model.

