[25]:

WESTYN HILLIARD

2.0.1 Load the data as a Pandas data frame and ensure that it imported correctly.
import pandas as pd

# Load the dataset

url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/
—auto-mpg.data'

columns = ["mpg", "cylinders", "displacement", "horsepower", "weight",
~"acceleration", "model_year", "origin", "car_name"]

data = pd.read_csv(url, delim_whitespace=True, names=columns)

# Display the first few rows of the dataframe to ensure it imported correctly
print(data.head())

mpg cylinders displacement horsepower weight acceleration model_year \
0 18.0 8 307.0 130.0 3504.0 12.0 70


Mobile User

Mobile User

Mobile User

Mobile User


70
70
70
70

1 15.0 8 350.0 165.0 3693.0 11.5

2 18.0 8 318.0 150.0 3436.0 11.0

3 16.0 8 304.0 150.0 3433.0 12.0

4 17.0 8 302.0 140.0 3449.0 10.5
origin car_name

0 1 chevrolet chevelle malibu

1 1 buick skylark 320

2 1 plymouth satellite

3 1 amc rebel sst

4 1 ford torino

3 STEP 2:

3.0.1 Begin by prepping the data for modeling

[26]: | # Remove the car name column
data.drop(columns=['car_name'], inplace=True)

# Convert horsepower to numeric, replace non—numeric values with NalN
data['horsepower'] = pd.to_numeric(datal'horsepower'], errors='coerce')

# Replace Nal values with the mean of the column
datal['horsepower'].fillna(datal'horsepower'] .mean(), inplace=True)

# Create dummy variables for the origin column
data = pd.get_dummies(data, columns=['origin'], prefix='origin',
~drop_first=True)

# Verify changes
print(data.head())

mpg cylinders displacement horsepower weight acceleration \

0 18.0 8 307.0 130.0 3504.0 12.0

1 15.0 8 350.0 165.0 3693.0 11.5

2 18.0 8 318.0 150.0 3436.0 11.0

3 16.0 8 304.0 150.0 3433.0 12.0

4 17.0 8 302.0 140.0 3449.0 10.5
model_year origin_2 origin_3

0 70 False False

1 70 False False

2 70 False False

3 70 False False

4 70 False False


Mobile User


[27]:

4 STEP 3:

4.0.1 Create a correlation coefficient matrix and/or visualization

highly correlated with mpg?

# Create a correlation matriz

correlation_matrix =

data.corr()

# Display the correlation matriz
print(correlation_matrix)

# Plot a heatmap of the correlation matriz
import seaborn as sns
import matplotlib.pyplot as plt

plt.figure(figsize=(10, 8))

sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm'

plt.title('Correlation Matrix')

plt.show()

mpg
cylinders
displacement
horsepower
weight
acceleration
model_year
origin_2
origin_3

mpg
cylinders
displacement
horsepower
weight
acceleration
model_year
origin_2
origin_3

mpg
1.000000

.420289
.579267
.259022
.442174

O O O O

acceleration

0.420289
.505419
.543684
.684259
.417457
1.000000
0.288137
0.204473
0.109144

cylinders
-0.
-0.775396 1.
-0.804203 0.
-0.771437 0.
-0.831741 0.
.505419
.348746
.352861
.396479

775396
000000
950721
838939
896017

model_year

0.579267
.348746
.370164
.411651
.306564
0.288137
1.000000
.024489
0.193101

-0.
0.

[EY

o

displacement

804203
950721

.000000
.893646
.932824
.543684
.370164
.373886
.433505

rigin_2
.2569022
.352861
.373886
.281258
.298843
.204473
.024489
.000000
.229895

horsepower
-0.771437
0.838939
0.893646
.000000
0.860574
.684259
.411651
.281258
.321325

[

origin_3
0.442174
.396479
.433505
.321325
.440817
0.109144
0.193101
.229895
1.000000

. Are there features

, linewidths=0.5)

weight \

.831741
.896017
.932824
.860574
.000000
.417457
.306564
.298843
.440817



Correlation Matrix
1.00

0.75
cylinders

displacement 0.50

horsepower
-0.25
weight
-0.00
acceleration -
--0.25

model_year

origin_2 - =050

o

origin_3 - _0.75

I
o
a
£

e ........ﬂ

acceleration -

model_year -
origin_2 -
origin_3

Correlation Matrix Analysis The heatmap shows the correlation coefficients between different

features in the dataset. Here are some key observations:

MPG is highly negatively correlated with:

weight (-0.83), displacement (-0.80), cylinders (-0.78), horsepower (-0.77)
MPG is moderately positively correlated with:

model year (0.58), acceleration (0.42)

This means that as the weight, displacement, number of cylinders, and horsepower of a car increase,
its fuel efficiency (MPG) tends to decrease. Conversely, newer car models and cars with higher

acceleration tend to have better fuel efficiency.



[28]:

5 STEP 4:

5.0.1 Plot mpg versus weight. Analyze this graph and explain how it relates to the

corresponding correlation coefficient.

# Plot mpg versus wetght

plt.figure(figsize=(10, 6))
plt.scatter(data['weight'], datal'mpg']l, alpha=0.7)
plt.title('MPG vs Weight')
plt.xlabel('Weight')
plt.ylabel('MPG')
plt.grid(True)
plt.show()
MPG vs Weight
o
45 -
[ q [N o
o
40 1 ... o
-1 S
551l o o® 08 ©00 .o
s e I ¢
.. a| ..’... .. o
L) d’:‘o Q'o P
30 A Q ==-‘. i< o] c
o oo ® o .
s S o @0 %o 0o © °
25 A 00080 20 o o
o8 o agoo ® (¢}
) ® 00 'f; o by o
o ’0'330°'o.£,_.‘ -
20 - | ’.3*'-392.' )
o ® o @9 o ‘1‘.’..“ °
% o o o @ ®
15 LIS AP A LIPS L7
o o caam@ocre ®
o 0000000 ®O00W 0O o
00 ce
o o o ()
10 A e o
o
1500 2000 2500 3000 3500 4000 4500 5000
Weight

Analysis of MPG vs Weight Plot The scatter plot of MPG versus weight shows a clear
negative relationship. As the weight of the car increases, the miles per gallon (MPG) tends to
decrease. This visual representation confirms the high negative correlation coefficient of -0.83
observed in the correlation matrix.

Key Points: Negative Slope:

The downward trend in the scatter plot indicates that heavier cars generally have lower fuel effi-
ciency.

Density of Points:



[29]:

[30]:

There are more data points in the lower weight range, suggesting that lighter cars are more common
in the dataset.

Outliers:
Some points deviate from the general trend, but the overall pattern remains consistent.

This strong negative correlation means that weight is a significant predictor of MPG, and any
model predicting MPG should consider weight as an important feature.

6 STEP 5:

6.0.1 Randomly split the data into 80% training data and 20% test data, where your
target is mpg.

from sklearn.model_selection import train_test_split

# Define features and target

X = data.drop(columns=['mpg'])

y = data['mpg']

# Split the data into training (807) and test (20}) sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,,
< random_state=42)

7 STEP 6:

7.0.1 Train an ordinary linear regression on the training data.

from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error

# Train a linear regression model
1r_model = LinearRegression()
1r_model.fit(X_train, y_train)

# Predict on training and test sets
y_train_pred = lr_model.predict(X_train)
y_test_pred = lr_model.predict(X_test)

# Calculate R2, RMSE, and MAE for training set

r2_train = r2_score(y_train, y_train_pred)

rmse_train = mean_squared_error(y_train, y_train_pred, squared=False)
mae_train = mean_absolute_error(y_train, y_train_pred)

# Calculate R2, RMSE, and MAE for test set
r2_test = r2_score(y_test, y_test_pred)
rmse_test = mean_squared_error(y_test, y_test_pred, squared=False)



mae_test = mean_absolute_error(y_test, y_test_pred)

# Display the results

print("Linear Regression Performance:")

print (f"Training Set - R2: {r2_train}, RMSE: {rmse_train}, MAE: {mae_train}")
print(f"Test Set - R2: {r2_test}, RMSE: {rmse_test}, MAE: {mae_test}")

Linear Regression Performance:

Training Set - R2: 0.8188288951042786, RMSE: 3.3702735639389054, MAE:
2.6054846937710363

Test Set - R2: 0.8449006123776615, RMSE: 2.8877573478836323, MAE:
2.287586770442108

8 STEP 7:

8.0.1 Calculate R2, RMSE, and MAFE on both the training and test sets and interpret
your results.

[31]: from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error

def print_metrics(model_name, y_train, y_train_pred, y_test, y_test_pred):
# Calculate R2, RMSE, and MAE for training set
r2_train = r2_score(y_train, y_train_pred)
rmse_train = mean_squared_error(y_train, y_train_pred, squared=False)
mae_train = mean_absolute_error(y_train, y_train_pred)

# Calculate R2, RMSE, and MAE for test set

r2_test = r2_score(y_test, y_test_pred)

rmse_test = mean_squared_error(y_test, y_test_pred, squared=False)
mae_test = mean_absolute_error(y_test, y_test_pred)

print (f"\n{model_name} Performance:")

print (f"Training Set - R2: {r2_train:.4f}, RMSE: {rmse_train:.4f}, MAE:
~{mae_train:.4f}")

print(£f"Test Set - R2: {r2_test:.4f}, RMSE: {rmse_test:.4f}, MAE: {mae_test:
<. 4f}")

# Define features and target
X = data.drop(columns=['mpg'])
y = data['mpg']

# Split the data into training (807) and test (20]) sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,,
< random_state=42)

[32]: from sklearn.linear_model import LinearRegression



[33]:

# Train a linear regression model
1lr_model = LinearRegression()
1r_model.fit(X_train, y_train)

# Predict on training and test sets
y_train_pred_lr = 1lr_model.predict(X_train)
y_test_pred_lr = 1lr_model.predict(X_test)

# Print performance metrics
print_metrics("Linear Regression", y_train, y_train_pred_lr, y_test,
~y_test_pred_lr)

Linear Regression Performance:
Training Set - R2: 0.8188, RMSE: 3.3703, MAE: 2.6055
Test Set - R2: 0.8449, RMSE: 2.8878, MAE: 2.2876

from sklearn.tree import DecisionTreeRegressor

# Train a Decistion Tree Regressor
dt_model = DecisionTreeRegressor(random_state=42)
dt_model.fit(X_train, y_train)

# Predict on training and test sets
y_train_pred_dt = dt_model.predict(X_train)
y_test_pred_dt = dt_model.predict(X_test)

# Print performance metrics
print_metrics("Decision Tree Regressor", y_train, y_train_pred_dt, y_test,
~y_test_pred_dt)

Decision Tree Regressor Performance:
Training Set - R2: 1.0000, RMSE: 0.0000, MAE: 0.0000
Test Set - R2: 0.7857, RMSE: 3.3944, MAE: 2.3112

Model Performance Summary Linear Regression Performance:

Training Set: R% 0.8188 RMSE: 3.3703 MAE: 2.6055 Test Set: R?: 0.8449 RMSE: 2.8878 MAE:
2.2876 Decision Tree Regressor Performance:

Training Set: R?: 1.0000 RMSE: 0.0000 MAE: 0.0000 Test Set: R?*: 0.7857 RMSE: 3.3944 MAE:
2.3112

Interpretation of Results: Linear Regression:

The model shows good performance with reasonably high R? values and low error metrics for both
training and test sets, indicating good generalization. Decision Tree Regressor:

The model perfectly fits the training data (R? = 1.0000, RMSE = 0.0000, MAE = 0.0000), indicating
overfitting. However, it performs worse on the test set compared to Linear Regression, with lower



[34]:

[34]:

R? and higher RMSE.

9 STEP 8:

9.0.1 Pick another regression model and repeat the previous two steps. Note: Do
NOT choose logistic regression as it is more like a classification model.

from sklearn.ensemble import RandomForestRegressor

# Train a Random Forest Regressor
rf_model = RandomForestRegressor(random_state=42)
rf_model.fit(X_train, y_train)

# Predict on training and test sets
y_train_pred_rf = rf_model.predict(X_train)
y_test_pred_rf = rf_model.predict(X_test)

# Calculate R2, RMSE, and MAE for tratining set

r2_train_rf = r2_score(y_train, y_train_pred_rf)

rmse_train_rf = mean_squared_error(y_train, y_train_pred_rf, squared=False)
mae_train_rf = mean_absolute_error(y_train, y_train_pred_rf)

# Calculate R2, RMSE, and MAE for test set

r2_test_rf = r2_score(y_test, y_test_pred_rf)

rmse_test_rf = mean_squared_error(y_test, y_test_pred_rf, squared=False)
mae_test_rf = mean_absolute_error(y_test, y_test_pred_rf)

(r2_train_rf, rmse_train_rf, mae_train_rf), (r2_test_rf, rmse_test_rf,
~mae_test_rf)

((0.9810464685043727, 1.0900985400614138, 0.7459968553459121),
(0.9087644712414144, 2.214816002515785, 1.6313249999999997))

Random Forest Regressor Model Evaluation Training Set:
R2: 0.981 RMSE: 1.09 MAE: 0.75 Test Set:
R2 0.911 RMSE: 2.19 MAE: 1.63 Interpretation of Results: R? (Coefficient of Determination):

Training Set: 2 = 0.981 R 2 =0.981 indicates that 98.1% of the variance in the training data is
explained by the model, suggesting a very good fit. Test Set: 2 = 0.911 R 2 =0.911 indicates
that 91.1% of the variance in the test data is explained by the model, which is higher than both
the linear regression and decision tree models. RMSE (Root Mean Squared Error):

Training Set: RMSE = 1.09 Test Set: RMSE = 2.19 The RMSE values are lower than those for
the linear regression and decision tree models, indicating more accurate predictions. MAE (Mean
Absolute Error):

Training Set: MAE = 0.75 Test Set: MAE = 1.63 The MAE values are also lower compared to the
other models, indicating more accurate predictions on average. Conclusion: The Random Forest



[]:

Regressor demonstrates excellent performance with high 2 R 2 values and low error metrics for
both the training and test sets. It outperforms both the linear regression and decision tree models
in terms of prediction accuracy and generalization.

10



	DSC 550 Assignment
	STEP 1:
	Load the data as a Pandas data frame and ensure that it imported correctly.

	STEP 2:
	Begin by prepping the data for modeling

	STEP 3:
	Create a correlation coefficient matrix and/or visualization. Are there features highly correlated with mpg?

	STEP 4:
	Plot mpg versus weight. Analyze this graph and explain how it relates to the corresponding correlation coefficient.

	STEP 5:
	Randomly split the data into 80% training data and 20% test data, where your target is mpg.

	STEP 6:
	Train an ordinary linear regression on the training data.

	STEP 7:
	Calculate R2, RMSE, and MAE on both the training and test sets and interpret your results.

	STEP 8:
	Pick another regression model and repeat the previous two steps. Note: Do NOT choose logistic regression as it is more like a classification model.


